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Conformal maps: the objects

Inside the domain: computability and complexity

Boundary behaviour: harmonic measure

Boundary behaviour: Caratheodory extension

Examples



The starting point: what are we computing?

1. The Riemann map: ”given” a simply connected domain Ω and a point
w ∈ Ω, ”compute” the conformal map f : (D, 0) 7→ (Ω, w)

(with
f ′(0) > 0, just to fix it).

2. Carathéodory extension of f . Given by
Carthéodory Theorem: Let Ω ⊂ C be a simply-connected domain. A
conformal map f : (D, 0) 7→ (Ω, w) extends to a continuous map D 7→ Ω
iff ∂Ω is locally connected.
A set K ⊂ C is called locally connected if there exists modulus of local
connectivity m(δ): a non-decreasing function decaying to 0 as δ → 0
and such that for any x, y ∈ K with |x− y| < δ one can find a
connected C ⊂ K containing x and y with diamC < m(δ).
f extends to a homeomorphism D 7→ Ω iff ∂Ω is a Jordan curve.

3. The harmonic measure on ∂Ω at w: first boundary hitting distribution
of Brownian motion started at w (or one of a score of other definitions).
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Computing the Riemann map

Constructive Riemann Mapping Theorem.(Hertling, 1997) The
following are equivalent:

(i) Ω is a lower-computable open set, ∂Ω is a lower-computable closed
set, and w0 ∈ Ω is a computable point;

(ii) The maps g and f are both computable conformal bijections.

Idea of the proof The lower-computability of Ω implies that one can
compute a sequence of rational polygonal domains Ωn such that
Ω = ∪Ωn. The maps fn : D 7→ Ωn are explicitly computable (by
Schwarz-Christoffel, for example) and converge to f . To check that
fn(z) approximates f(z) well enough, we just need to approximate the
boundary from below by centers of rational balls intersecting it. Other
direction: just follows from distortion theorems.
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Hierarchy of Complexity Classes

Question: How hard is it to compute a conformal map g in a given point
w ∈ Ω?

P – computable in time polynomial in the length of the input.
NP – solution can be checked in polynomial time.
#P – can be reduced to counting the number of satisfying assignments
for a given propositional formula (#SAT).
PSPACE – solvable in space polynomial in the input size.
EXP – solvable in time 2n

c
for some c (n – the length of input).

KNOWN: P 6= EXP.
CONJECTURED:P ( NP ( #P ( PSPACE ( EXP.
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A lower bound on computational complexity

Theorem (B-Braverman-Yampolsky). Suppose there is an algorithm
A that given a simply-connected domain Ω with a linear-time computable
boundary, a point w0 ∈ Ω with dist(w0, ∂Ω) > 1

2 and a number n,
computes 20n digits of the conformal radius f ′(0)), then we can use one
call to A to solve any instance of a #SAT(n) with a linear time overhead.
In other words, #P is poly-time reducible to computing the conformal
radius of a set.
Any algorithm computing values of the uniformization map will also
compute the conformal radius with the same precision, by Distortion
Theorem.
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An upper bound on computational complexity

Theorem (B-Braverman-Yampolsky). There is an algorithm A that
computes the uniformizing map in the following sense:
Let Ω be a bounded simply-connected domain, and w0 ∈ Ω. Assume that
the boundary of a simply connected domain Ω, ∂Ω, w0 ∈ Ω, and w ∈ Ω
are provided to A by an oracle. Then A computes g(w) with precision n
with complexity PSPACE(n).

The algorithm uses solution of Dirichlet problem with random walk and
de-randomization.

Later improved by Rettinger to #P .
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The proof of lower bound

For a propositional formula Φ with n variables, let L ⊂ {0, 1, . . . , 2n − 1}
be the set of numbers corresponding to its satisfying instances. Let k be
the number of elements of L.

Let ΩL be defined as

D \ ∪l∈L{|z − exp(2πil2−n)| ≤ 2−10n},
the unit disk with k very small and spaced out half balls removed.
The key estimate:
if f : (D, 0)→ (ΩL, 0) is conformal, f ′(0) > 0 and n is large enough,
then ∣∣f ′(0)− 1 + k2−20n−1

∣∣ < 1

100
2−20n.

The boundary of ΩL is computable in linear time, given the access to Φ.
The estimate implies that using the algorithm A we can evaluate |L| = k,
and solve the #SAT problem on Φ.
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Computability of harmonic measure

A measure µ on a metric space X is called computable if for any
computable function φ, the integral

∫
X φdµ is computable.

Theorem (B-Braverman-Rojas-Yampolsky). If a closed set K ⊂ C is
computable, uniformly perfect, and has a connected complement, then in
the presence of oracle for w /∈ K, the harmonic measure of Ω = Ĉ \Kat
w0 is computable.

A compact set K ⊂ C which contains at least two points is uniformly
perfect if there exists some C > 0 such that for any x ∈ K and r > 0,
we have

(B(x,Cr) \B(x, r)) ∩K = ∅ =⇒ K ⊂ B(x, r).

In particular, every connected set is uniformly perfect.

We do not assume that Ω is simply-connected, but we need the uniform
perfectness of the complement: there exists a computable regular domain
for which the harmonic measure is not computable.
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Approximating harmonic measure: capacity density
condition.

Theorem (Pommerenke, 1979): For a domain with uniformly perfect
boundary there exists a constant ν = ν(C) < 1 such that for any y ∈ Ω

P[|By
T − y| ≥ 2 dist(y, ∂Ω)] < ν.

Here By
T is the first hitting of the boundary by Brownian motion started

at y.

By the strong Markov property of the Brownian motion, for any n
P
[
|By

T − y| ≥ 2n dist(y, ∂Ω)
]
< νn.

Take any computable φ. We need to compute E(φ(BT )). Compute the
interior polygonal δ-approximation Ω′ to Ω for small enough δ. Then it is
easy to see that E(φ(BT )− φ(BT ′)) is small, since with high probability
BT is close to BT ′ .
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Carathéodory extension.

What information about Ω does one need to compute f up to the
boundary?

Logical to assume that m(δ) for ∂Ω has to be computable. Wrong!

Carathéodory modulus. A non-decreasing function η(δ) is called the
Carathéodory modulus of Ω if η(δ)→ 0 as δ → 0 and if for every
crosscut γ with diam(γ) < δ we have diamNγ < η(δ). Here Nγ is the
component of Ω \ γ not containing w0.

η(δ) ≤ m(δ), but η(δ) exists iff m(δ) exists.
Closer related to the Modulus of local connectivity m′(δ) of C \ Ω:
m′(δ) ≤ 2η(δ) + δ.

Theorem(B-Rojas-Yampolsky) The Carathéodory extension of
f : D→ Ω is computable iff f is computable and there exists a
computable Carathéodory modulus of Ω.
Furthermore, there exists a domain Ω with computable Carathéodory
modulus but no computable modulus of local connectivity.
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Carathéodory modulus. A non-decreasing function η(δ) is called the
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Carathéodory modulus. A non-decreasing function η(δ) is called the
Carathéodory modulus of Ω if η(δ)→ 0 as δ → 0 and if for every
crosscut γ with diam(γ) < δ we have diamNγ < η(δ). Here Nγ is the
component of Ω \ γ not containing w0.

η(δ) ≤ m(δ), but η(δ) exists iff m(δ) exists.
Closer related to the Modulus of local connectivity m′(δ) of C \ Ω:
m′(δ) ≤ 2η(δ) + δ.

Theorem(B-Rojas-Yampolsky) The Carathéodory extension of
f : D→ Ω is computable iff f is computable and there exists a
computable Carathéodory modulus of Ω.
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General simply-connected domains: Carathéodory metric.

Carthéodory metric on (Ω, w):

distC(z1, z2) = inf diam(γ),

where γ is a closed curve or crosscut in Ω separating {z1, z2} from w0.
(Defined as continuous extension when one of the points is equal to w0.)

The closure of Ω in Carathéodory metric is called the Carathéodory
compactification, Ω̂. It is obtained from Ω by adding the prime ends.

Carathéodory Theorem: f is extendable to a homeomorphism
f̂ : D 7→ Ω̂.

Computable Carathéodory Theorem (B-Rojas-Yampolsky): In the
presence of oracles for w0 and for ∂Ω, both f̂ and ĝ = f̂−1 are
computable.
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Carthéodory metric on (Ω, w):

distC(z1, z2) = inf diam(γ),

where γ is a closed curve or crosscut in Ω separating {z1, z2} from w0.
(Defined as continuous extension when one of the points is equal to w0.)
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Warshawski’s theorems

Oscillation of f near boundary:

ω(r) := sup
|z0|=1,|z1|<1, |z2|<1,|z1−z0|<r,|z2−z0|<r

|f(z1)− f(z2)|.

Warshawski’s Theorem (1950): ω(r) ≤ η
((

2πA
log 1/r

)1/2)
, for all

r ∈ (0, 1).
Here A is the area of Ω, and η(δ) is Carathéodory modulus.

The estimate |f(z)− f((1− r)z)| ≤ ω(r) for |z| = 1 allows one to
compute f(z) using f(rz) for r close to 1.
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The estimate |f(z)− f((1− r)z)| ≤ ω(r) for |z| = 1 allows one to
compute f(z) using f(rz) for r close to 1.

11



Other direction: Lavrentieff-type estimate

A refinement of Lavrentieff estimate(1936) (Also proven by
Ferrand(1942) and Beurling in the 50ties). Let M = dist(∂Ω, w0), γ be
a crosscut with dist(∂Ω, w0) ≥M/2, ε2 < M/4. Then

diam(γ) < ε2 =⇒ diam(f−1(Nγ)) ≤ 30ε√
M
.

Essentially, f̂−1 is 1/2-Hölder as a map from Ω̂ to D.

The estimate implies that

diam(Nγ) ≤ 2ω(diam(f−1(Nγ))) ≤ 2ω

(
30ε√
M

)
.

Thus, if f is computable up to the boundary, 2ω
(

30ε√
M

)
is a computable

Carathéodory modulus.
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A domain with computable boundary and
noncomputable harmonic measure.

Let B ⊂ N be a lower-computable, non-computable set. We modify the
unit circle by inserting the following ”gates” at exp 2πi (2−n):

e 2
-n -2niπ2 ( )2-e 2

-n -2niπ2 ( )2+e 2
-n -2niπ2 ( )2- e 2

-n -2niπ2 ( )2+

Ln

8 jLn

Specifically, if n ∈ B is enumerated at stage j we take the interval
[exp 2πi

(
2−n − 2−2n

)
, exp 2πi

(
2−n + 2−2n

)
] and insert j equally

spaced small arcs such that the harmonic measure of the ”outer part of
the gate” is at least 1/2× 2−2n, producing a j-gate.
Otherwise, if n /∈ B, we almost cover the gate with one interval so that
the harmonic measure on the the ”outer part of the gate” is at most
2−100n, making an ∞-gate.
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A domain with computable boundary and
noncomputable harmonic measure.

e 2
-n -2niπ2 ( )2-e 2

-n -2niπ2 ( )2+e 2
-n -2niπ2 ( )2- e 2

-n -2niπ2 ( )2+

Ln

8 jLn

The resulting domain Ω is regular.

To compute its boundary with precision 1/j, run an algorithm
enumerating B for j steps. Insert j-gate for all n which are not yet
enumerated.
But if the harmonic measure of Ω would be computable, we would just
have to compute it with precision 2−10n to decide if n ∈ B. This
contradicts non-computability of B!
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A domain with computable Carathéodory extension and
no computable modulus of local connectivity:
construction

Let again B ⊂ N be a lower-computable, non-computable set. Set
xi = 1− 1/2i.

The domain Ω is constructed by modifying the square (0, 1)× (0, 1) as
follows.

0 1

1

xj

xi

xj

xi

If i /∈ B, then we add a straight line
(i-line) to I going from (xi, 1) to
(xi, xi).
If i ∈ B and it is enumerated in
stage s, we remove i-fjord, i.e. the
rectangle

[(xi − si, (xi + si]× [xi, 1]

where si = min{2−s, 1/(3i2)}.
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The example: ∂Ω and Carathéodory modulus are
computable.

0 1

1

xj

xi

xj

xi

Computing a 2−s Hausdorff
approximation of ∂Ω. Run an
algorithm enumerating B for s+ 1
steps. For all those i’s that have
been enumerated so far, draw the
corresponding i-fjords. For all the
other i’s, draw a i-line.

Carathéodory modulus: 2
√
r.
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Carathéodory modulus: 2

√
r.

16



The example: Modulus of local connectivity m(r) is not
computable

0 1

1

xj

xi

xj

xi

Compute B using m(r).

First, for
i ∈ N, compute ri ∈ Q such that

m(2 · 2−ri) < xi
2
.

If i ∈ B then i is enumerated in
fewer than ri steps. Our algorithm
to compute B will emulate the
algorithm for enumerating B for ri
steps.
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